Abstract

SummaryBackgroundCancer elicits a complex adaptive response in an organism. Limited information is available for the body-wide effects induced by cancer. Here, we evaluated multiorgan changes in mouse models of pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions (pancreatic intraepithelial neoplasia, PanIN) to decipher changes that occur during PDAC development.MethodsRNA-sequencing was employed in the brain, colon, stomach, kidney, heart, liver, and lung tissues of mice with PanIN and PDAC. A combination of differential expression analysis and functional-category enrichment was applied for an in-depth understanding of the multiorgan transcriptome. Differentially expressed genes were verified by quantitative real-time polymerase chain reaction. Neutrophil and macrophage infiltration in multiple organs was analyzed by immunohistochemical staining. Leukotriene B4 (LTB4) levels in mouse and human serum samples were determined by enzyme-linked immunosorbent assay.FindingsTranscriptional changes within diverse organs during PanIN and PDAC stages were identified. Using Gene Ontology enrichment analysis, increased neutrophil infiltration was discovered as a central and prominent affected feature, which occurred in the liver, lung, and stomach at the PanIN stage. The brain appeared to be well protected from the sequels of PanIN or PDAC. Importantly, serum LTB4 was able to discriminate PDAC from normal controls, chronic pancreatitis, and intraductal papillary mucinous neoplasms with high performance.InterpretationOur study provides a high-resolution cartographic view of the dynamic multiorgan transcriptomic landscape of mice with PDAC and its precursor lesions. Our findings suggest that LTB4 could serve as a biomarker for the early detection of PDAC.FundingThe complete list of funders can be found in the Acknowledgement section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call