Abstract
Microbial kinetics for simultaneous caffeine degradation and its biotransformation to theophylline has been investigated using Fusarium solani. Caffeine was utilized by the fungus as a sole nitrogen source in the presence of sucrose, which served as the primary carbon source. A reaction mechanism involving Monod kinetics with both substrate and product inhibition was formulated based on experimental evidence. A total of thirteen kinetic parameters were involved in the model formulation and these were estimated using simulated annealing algorithm. Moreover, the parameter estimation was carried out for three different experimental sets simultaneously with varying initial sucrose concentration, in order to obtain a common set. Based on sensitivity analysis, among thirteen parameters, saturation constant of biomass accumulation from sucrose utilization (Ks1), yield of biomass from sucrose utilization (YX2/X1), lumped parameter which was defined as apparent yield of biomass from caffeine degradation process (YX2/X3), and yield of theophylline from caffeine metabolism (YX4/X3), were observed to be highly sensitive. The experimental results were in good agreement with the model predictions and have also been validated for an experimental setup which was not used for calibration. The results of the present study has potential application in the development of a process for detoxification of caffeine containing wastes as well as for production of a value added product theophylline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.