Abstract
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons. The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures. The transverse vibration of the stay cables, which can be significant in some cases, are usually neglected in previous research. In the present study, a new three-node cable element has been developed to model the transverse motions of the cables. The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness. The nonlinear effect of the cable caused by its self-weight is included in the formulation. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.