Abstract

A set of 45 dust envelopes of carbon stars has been modeled. Among them, 34 were selected according to their dust envelope class (as suggested by Sloan, Little-Marenin & Price, 1998) and 11 are extreme carbon stars. The models were performed using a code that describes the radiative transfer in dust envelopes considering core/mantle grains composed by an alpha-SiC core and an amorphous carbon (A.C.) mantle. In addition, we have also computed models with a code that considers two kinds of grains - alpha-SiC and A.C. - simultaneously. Core-mantle grains seem to fit dust envelopes of evolved carbon stars, while two homogeneous grains are more able to reproduce thinner dust envelopes. Our results suggest that there exists an evolution of dust grains in the carbon star sequence. In the beginning of the sequence, grains are mainly composed of SiC and amorphous carbon; with dust envelope evolution, carbon grains are coated in SiC. This phenomena could perhaps explain the small quantity of SiC grains observed in the interstellar medium. However, in this work we consider only alpha-SiC grains, and the inclusion of beta-SiC grains can perhaps change some of there results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.