Abstract

Population balance equations combined with Eulerian–Eulerian two-phase model are employed to predict the polydispersed bubbly flow inside the slab continuous-casting mold. The class method, realized by the MUltiple-SIze- Group (MUSIG) model, alongside with suitable bubble breakage and coalescence kernels is adopted. A two-way momentum transfer mechanism model combines the bubble induced turbulence model and various interfacial forces including drag, lift, virtual mass, wall lubrication, and turbulent dispersion are incorporated in the model. A 1/4th scaled water model of the slab continuous-casting mold was built to measure and investigate the bubble behavior and size distribution. A high speed video system was used to visualize the bubble behavior, and a digital image processing technique was used to measure the mean bubble diameter along the width of the mold. Predictions by previous mono-size model and MUSIG model are compared and validated against experimental data obtained from the water model. Effects of the water flow rate and gas flow rate on the mean bubble size were also investigated. Close agreements by MUSIG model were achieved for the gas volume fraction, liquid flow pattern, bubble breakage and coalescence, and local bubble Sauter mean diameter against observations and measurements of water model experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.