Abstract

The frictional behavior at local contacts in an automotive brake system was analysed on the basis of computer simulation by movable cellular automata method. The boundary conditions of the model were adjusted to experimental observations obtained by TEM. The model proved to be adequate for simulating mechanical mixing and velocity accommodation at the pad-disc interface. Dynamics of particle interaction were visualized by showing rotation angles and velocity vectors. The model provided information on the development of plastic deformation for metal-on-metal contacts and on crack formation at graphite lamellae of cast iron disc. Results are in agreement with conventional friction theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.