Abstract

In this paper, backscattering from 3D volume inhomogeneities in the seabed is modeled and the results compared with experimental data at 250-650 Hz. The experiment was part of the Acoustic Reverberation Special Research Program (ARSRP) and the data were obtained in a sediment pond on the western flank of the Mid-Atlantic Ridge. A volume scattering model based on first-order perturbation theory is developed incorporating contributions from both sound speed and density fluctuations. With the propagators, i.e., the Green's functions, handled accurately through numerical wave number integration and random fluctuations generated effectively by a new scheme modified from the spectral method, the model is capable of simulating monostatic, backscattered fields in the frequency domain as well as in the time domain owing to 3D volumetric sediment inhomogeneities. The model compares favorably and consistently with the ARSRP backscattering data over the entire frequency band, with the fluctuations of sound speed and density in two irregular sediment layers, identified from the data analysis, described by a power-law type of power spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.