Abstract

Summary Prediction of formation damage that occurs in horizontal wells, often openhole completed, is a critical point for optimizing an oilfield development. The economic impact of near-wellbore induced drilling damage and cleanup efficiency has led to significant progress in both experimental and numerical studies designed to assess the wellbore flow properties during oil production. In a previous paper, a methodology combining both experimental and numerical approaches was presented to evaluate the natural cleanup of horizontal wells drilled with an oil-based mud (OBM). This paper presents an extension of the methodology for simulating both (a) near-wellbore invasion and permeability damage generated with a water-based mud (WBM), and (b) natural cleanup during oil backflow when the well is put into production. There is a fundamental difference between WBM and OBM invasions. In an oil-bearing formation, the displacement of the oil in place with an OBM filtrate is a miscible displacement process, while the displacement with a WBM filtrate is a two-phase flow process (imbibition), generating high wetting-phase saturation in the invaded zone. Then, during oil backflow, a portion of the wetting phase is trapped, leading to residual wetting-phase saturation greater than the initial one. Even in the absence of chemical interaction between filtrate and fluids in place, this induces an adverse water/oil relative permeability effect, which is an additional permeability impairment. This paper describes a numerical approach to model the formation damage with WBM and to predict well performance for natural cleanup when the well is subject to a pressure drawdown. The kinetics of fluid filtrate invasion, the filter-cake properties, and the filtrate/oil relative permeability curves in imbibition and drainage, together with damaged and return permeabilities, are obtained from specific drilling fluid damage laboratory tests. Using these data, the fluid filtrate invasion during the drilling phase is simulated, leading to a cone-type invasion depth along the horizontal well. This approach has allowed us to study the impact of various parameters related to fluids or cake properties, drilling conditions, and natural cleanup processes on the well performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call