Abstract

The restrained thermal expansion of a pretensioned strand causes thermal prestress loss during steam curing until sufficient bond strength develops. The amount of thermal prestress loss is directly related to the characteristics of the interfacial bond stress–slip relationship at different maturity phases of concrete. For a rational assessment, the bond stress–slip relationship needs to be investigated experimentally at different maturity phases. In this study, a total of 12 pull-out tests were performed using seven-wire strand of 12.7 mm diameter, at different concrete equivalent ages of 7.8, 23.5, 53.8 and 85.2 h. Based on the test results, an empirical model of the bond stress–slip relationship was developed. The model comprised four segments: a curvilinear ascending region, a constant maximum region, a linearly descending region, and a region of constant frictional bond stress. The characteristic values in the model were expressed as functions of equivalent age. The model was able to predict the test results with reasonable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.