Abstract

Microalgae cultivation is justified by the production of high-value fine chemicals and biofuels, essential to reduce the emissions of gases that cause global warming. This paper presents a study of the growth of microalgae Haematococcus pluvialis considering light conditions from 2000 to 10,000 lux, temperature 22?C and pH in the 6.5-12.5 range. The experiments were performed in 4 liter flat plate photobioreactors using the Rudic culture medium. The biomass growth was measured by counting cells in a Neubauer chamber. Both the light intensity and the pH of the medium influenced the rate of growth of the microalgae. A model with exponential behavior was proposed to describe the production of microalgae biomass over time. A nonlinear autoregressive model based on an Artificial Neural Network was used to predict the dynamic behavior of the pH during the growth of the microalgae at different light intensities. Simulations were carried out to analyze the behavior of biomass production at other light intensities within the range considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.