Abstract

Barrier-engineered charge-trapping NAND Flash (BE-CTNF) devices are extensively examined by theoretical modeling and experimental validation. A general analytical tunneling current equation for multilayer barrier is derived using the Wentzel-Kramers-Brillouin approximation. The rigorously derived analytical form is valid for both electron and hole tunnelings, as well as for any barrier composition. With this, the time evolution (Vt-time) of any BE-CTNF device during programming/erasing can be accurately simulated. The model is validated by experimental results from bandgap-engineered silicon-oxide-nitride-oxide-silicon and various structures using an Al2O3 top-capping layer. Using this model, various structures of BE-CTNF with high-κ tunneling or blocking dielectric are investigated. Finally, the impacts of barrier engineering on incremental-step pulse programming are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.