Abstract

Fluidized bed reactors for steam methane reforming, with and without immersed membrane surfaces for withdrawal of hydrogen, are modeled with oxygen added in order to provide the endothermic heat required by the reforming reactions. Porous alumina, palladium and palladium-coated high-flux tubes are investigated as separation materials, the latter two being permselective. Hydrogen yield and permeate hydrogen molar flow are predicted to decrease with increasing oxygen flow, and to increase with temperature. When the steam-to-carbon ratio increases, permeate hydrogen yield decreases slightly, while the total hydrogen yield increases for all configurations. The flow of oxygen required to achieve autothermal conditions depends on such factors as the reactor temperature, steam-to-carbon ratio and preheating of the feed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.