Abstract

The main way to produce cast iron is in the blast furnace. In the production of hot metal, the control of silicon is important. Alumina and silica react chemically with limestone and dolomite to form blast furnace slag. In this work, 12 artificial neural networks (ANNs) were modeled with different numbers of neurons in each hidden layer. The number of neurons varied between 10 and 200 neurons. ANNs were used to predict the silicon content of hot metal produced. The ANN with 30 neurons showed the best performance. In the test phase, the mathematical correlation was 97.5% and the mean square error (MSE) was 0.0006, and in the cross-validation phase, the mathematical correlation was 95.5% while the MSE was 0.00035.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.