Abstract
Anisotropic plastic behavior of advanced high strength steel sheet of grade TRIP780 (Transformation Induced Plasticity) was investigated using three different yield functions, namely, the von Mises’s isotropic, Hill’s anisotropic (Hill’48), and Barlat’s anisotropic (Yld2000-2d) criterion. Uniaxial tensile and balanced biaxial test were conducted for the examined steel in order to characterize flow behavior and plastic anisotropy for different stress states. Especially, disk compression test was performed for obtaining balanced r-value. All these data were used to determine the anisotropic coefficients. As a result, yield stresses and r-values for different directions were calculated according to these yield criteria. The results were compared with experimental data. To verify the modelling accuracy, tensile tests of various notched samples were carried out and stress-strain distributions in the critical area were characterized. By this manner, the effect of stress triaxiality due to different notched shapes on the strain localization calculated by the investigated yield criteria could be studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.