Abstract

In many moderately sized European cities, the public transport systems based on trams and buses are operating at their capacity limits. Ropeways have proved to be a suitable transit extension in several Latin American cities. Few travel demand models attempt to forecast the impact of urban ropeways. So far, all of these models do not consider the specific properties of a ropeway. This paper seeks to estimate a mode choice model that includes a ropeway as a separate transport system. Relative to bus operation in European cities, ropeways promise improved timetable keeping, with fewer delays at the start because of high service rates, and they also offer improved passenger comfort with higher capacities. These benefits must be reflected in the travel demand model by mode-specific parameter settings that are estimated based on a survey. A stated choice experiment was conducted, in which respondents compared realistic trip situations using a ropeway with traditional urban transport modes, with aspects including access and egress time, waiting time, travel time, travel costs, reliability, and crowding. The situations of choice were selected from observed trip data to be as realistic as possible. Using a mixed logit (ML) model, the parameter estimation indicates that crowding and reliability as well as the personal attitude of potential users have a statistically significant influence on the choice behavior of people in Graz, a moderately sized city in Austria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call