Abstract

The blood flow in large arteries is commonly analyzed by means of the constitutive equations. However, it is not appropriate to use constitutive equations for small arteries because of the heterogeneity of the blood. In this paper, a new method to model an erythrocyte by using beads and springs is proposed as an alternative to analyze the blood flow. The behavior of a single erythrocyte is computed under a constant shear field. The rotating attitude of an erythrocyte, shear viscosity, normal stress difference coefficient and stress thinning are discussed. The results show that the bead-spring model appropriately can simulate the tank tread motion of an erythrocyte under a high shear field and stress thinning. It is therefore considered that the bead-spring erythrocyte model is able to consistently express blood characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.