Abstract

The combustion of aluminum nano-particles under fuel-lean conditions is studied in the counterflow configuration by means of analytical approach. The flame is assumed to consist of three zones: preheat, flame, and post flame regimes. By extraction and non-dimensionalizing of energy equations and then solving them in preheat zone and using perturbation method in the flame regime, analytical formulas for particles and gas temperature profile are presented. Then dimensionless ignition and ultimate flame temperatures, place of ignition point and flame thickness as a function of equivalence ratio in different strain rates are obtained. In addition, dimensionless ignition temperature, place of ignition point and flame thickness in terms of strain rate for different equivalence ratios are demonstrated. Reasonable agreement between the analytical solution of aluminum nano-particles counterflow combustion and experimental data is obtained in terms of flame temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.