Abstract

A series of graphitized carbon blacks have been studied using argon and nitrogen adsorption at their boiling points. Analysis of adsorption isotherms was performed with nonlocal density functional theory (NLDFT) accounting for the Axilrod-Teller equation to describe the effect of nonadditivity of the gas-solid interaction. In our previous study [Ustinov, E. A. J. Chem. Phys. 2010, 132, 194703] we have shown that the nonadditivity effect decreases the attractive component of Ar-Ar interaction in the first molecular layer adjacent to the graphite surface by about 23%. This is a source of a large error (up to 40%) when a standard NLDFT is applied to fitting the low-temperature Ar adsorption isotherm on a graphitized carbon black. A new approach that incorporates the Axilrod-Teller equation into the standard NLDFT diminishes the relative error from 40 to 4%, which suggests that the nonadditivity correction should not be ignored in most adsorption systems including crystalline and amorphous solids. The present study is an extension of our approach to N(2) adsorption isotherms at 77.3 K on graphitized carbon blacks. We show that the approach allows to reliably determine the gas-solid molecular parameters, the gas-solid nonadditivity coefficient, the Henry coefficient, and the specific surface area. The surface areas of different carbon blacks determined with the N(2) at 77.35 K and Ar at 87.29 K are very close to each other, though in the former case the values proved to be slightly smaller presumably due to nonspherical shape of the nitrogen molecule. A comparison with the Brunauer, Emmett, and Teller method is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.