Abstract

Acetylcholinesterase inhibition was modeled for a set of 136 tacrine analogues using Bayesian-regularized Genetic Neural Networks (BRGNNs). In the BRGNN approach the Bayesian-regularization avoids overtraining/overfitting and the genetic algorithm (GA) allows exploring an ample pool of 3D-descriptors. The predictive capacity of our selected model was evaluated by averaging multiple validation sets generated as members of diverse-training set neural network ensembles (NNEs). The ensemble averaging provides reliable statistics. When 40 members are assembled, the NNE provides a reliable measure of training and test set R values of 0.921 and 0.851 respectively. In other respects, the ability of the nonlinear selected GA space for differentiating the data was evidenced when the total data set was well distributed in a Kohonen Self-Organizing Map (SOM). The location of the inhibitors in the map facilitates the analysis of the connection between compounds and serves as a useful tool for qualitative predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.