Abstract

A computational procedure is presented for investigating photoinduced switchable rotaxanes and demonstrated for a known system. This procedure starts with the generation of >104 chemically reasonable rotaxane coconformations based on an empirical intramolecular potential-energy function. Each of the structures is then assigned by its gross structural features (coiled or extended) and by the position of the ring along the shaft. Single-point energy calculations at the semiempirical (AM1) level are then carried out for each structure in the singlet (ground), triplet, and anionic doublet states. The structural features are then correlated with energy for each state. What emerges is a profile of the structure−energy relationship that captures the salient features of the system that endow it with devicelike character. The full geometry optimization of a subset of the coconformations demonstrates that the procedure based on single-point calculations is sufficient to obtain a profile of the relationship of the structural features to energy that is consistent with experiments at a greatly reduced computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.