Abstract

Active materials possess unique properties of being able to respond autonomously to external stimuli, yet realizing and regulating the motion behavior of active machines remains a major challenge. Conventional control approaches, including sensor control and external device control, are both complex and difficult to implement. In contrast, active materials-based self-oscillators offer distinct properties such as periodic motion and ease of regulation. Inspired by paddle boats, we have proposed a conceptual light-fueled self-paddling boat with a photothermally responsive liquid crystal elastomer (LCE)-based motor that operates under steady illumination and incorporates an LCE fiber. Based on the well-established dynamic LCE model and rotation dynamics, the dynamic equations for governing the self-paddling of the LCE-steered boat are derived, and the driving torque of the LCE-based motor and the paddling velocity of the LCE-steered boat are formulated successively. The numerical results show that two motion modes of the boat under steady illumination: the static mode and the self-paddling mode. The self-paddling regime arises from the competition between the light-fueled driving torque and the frictional torque. Moreover, the critical conditions required to trigger the self-paddling are quantitatively examined as well as the significant system parameters affecting the driving torque, angular velocity, and paddling velocity. The proposed conceptual light-fueled self-paddling LCE-steered boat exhibits benefits including customizable size and being untethered and ambient powered, which provides valuable insights into the design and application of micromachines, soft robotics, energy harvesters, and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.