Abstract

Flexible instruments are increasingly used to carry out surgical procedures. The instrument tip is remotely controlled by the surgeon. The flexibility of the instrument and the friction inside the curved endoscope jeopardize the control of the instrument tip. Characterization of the surgical instrument behavior enables the control of the tip motion. A flexible multibody modeling approach was used to study the sliding behavior of the instrument inside a curved endoscope. The surgical instrument was modeled as a series of interconnected planar beam elements. The curved endoscope was modeled as a rigid curved tube. A static friction-based contact model was implemented. The simulations were carried out both for the insertion of the flexible instrument and for fine manipulation. A computer program (SPACAR) was used for the modeling and simulation. The simulation result shows the stick-slip behavior and the motion hysteresis because of the friction. The coefficient of friction has a large influence on the motion hysteresis, whereas the bending rigidity of the instrument has little influence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.