Abstract

In a recent paper, the effect of cyclic shearing on forced shear localization in an infinite granular strip between rough boundaries was numerically investigated. The present paper focuses on the evolution of spontaneous developed shear localization within an granular body under plane strain conditions, constant lateral pressure and cyclic vertical compression-extension. For a simulation of the mechanical behavior of a cohesionless granular material, a micro-polar hypoplastic constitutive is used which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. For the calibration of the constitutive constants, the data of a medium quartz sand are used. The attention of numerical simulations is laid on the influence of the number of cycles, the magnitude of the vertical deformation amplitude and the initial density on the evolution of shear zones in an initially prismatic granular specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call