Abstract
This paper presents a comprehensive nonlinear model of the controlled constant voltage transformer also known as the ferroresonant transformer. Saturation is a normal mode of operation for this device. This paper derives an equivalent electrical circuit that relates to the physical structure of a typical design. The level of detail includes winding resistances, continuously nonlinear magnetizing inductances, tapped windings, and leakage inductances. The paper describes methods to extract the winding resistances, leakage inductances, and hysteresis loops of the transformer and how to fit the latter into single-valued nonlinear functions. The paper compares computer simulation results of the model with those obtained analytically and experimentally. The results show that the derived circuit will be very useful for designers of the ferroresonant transformer, which is used in uninterruptible power supplies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.