Abstract

Abstract The present model is based on a combined self-sustained liquid fuel vaporization – combustion system, where the liquid fuel vaporization occurs on a wetted wall plate with energy transferred through the plate from the combustion of vaporized oil. The vaporization energy has been derived through the radiative interaction of the vaporizing plate and an upstream end surface of the porous medium. The inert porous medium, used in the flow passage of combustion gas, is allowed to emit and absorb radiant energy. The radiative heat flux equations for the porous medium have been derived using the two-flux gray approximation. The work analyzes the effect of emissivities of vaporizing plate and porous medium, the optical thickness of medium and equivalence ratio on the kerosene vaporization rate, combustion temperature and radiative output of the system. Combination of low and high emissivities of vaporizing plate and porous medium respectively with low optical thickness of medium makes the system operable over a wide range of power. The study covers the data concerning the design and operating characteristics of a practical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.