Abstract

AbstractPiezoelectric microelectromechanical systems (MEMS) energy harvesting is an attractive technology for harvesting small energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major challenges to be solved for real-world applications. A MEMS-scale doubly clamped nonlinear beam resonator has demonstrated very wide bandwidth and high-power density among the energy harvesters reported. In this paper, a first complete theoretical discussion of nonlinear resonance-based piezoelectric energy harvesting is provided. The sectional behavior of the beam has been studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model has been built through Rayleigh–Ritz method and the resulting nonlinear coupled equations have been solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behavior has been studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.