Abstract

This contribution is dedicated to the modeling of the end-wall flows in a throughflow model for turbomachinery applications. The throughflow model is based on the Euler or Navier-Stokes equations solved by a Finite-Volume technique. Two approaches are presented for the end-wall modeling. The first one is based on an inviscid formulation with dedicated 3-D distributions of loss coefficient and deviation in the end-wall regions. The second approach is directly based on a viscous formulation with no-slip boundary condition along the annular end-walls and blade force modification in the region close to the end-walls. The throughflow results are compared to a series of 3-D Navier-Stokes calculations averaged in the circumferential direction. These 3-D calculations were performed on the three rotors of a low pressure axial compressor, for a series of tip clearance values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call