Abstract

For bulk piezoelectric ceramics plates, the fundamental thickness-stretch (TSt) waves are always coupled to the in-plane extension waves and the symmetric thickness-shear waves. The occurrence of these spurious modes in bulk piezoelectric ceramics plates is undesirable as it may interfere with the operation of transducers. 1–3 piezoelectric composites are promising candidates to suppress the spurious modes mentioned above. However, theoretical modelling of multiphase ceramic composite objects is very complex. In this study, a simple analytical TSt vibration model is constructed from three-dimensional equations of linear piezoelectricity. The mechanical damping is considered in the model by introducing a complex elastic constant. The performance of 1–3 piezoelectric composites is analysed and the electrical impedance results from theoretical and experimental analysis are compared. The results show that there is excellent agreement between the experimental electrical impedance and that obtained by the theoretical TSt vibration analysis. This indicates that 1–3 piezoelectric composites can be operated in a nearly pure TSt vibration mode near the fundamental resonance. The analytical model we present is valid for analysing 1–3 piezoelectric composites plates with large aspect ratios quickly and efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.