Abstract

Increasing nitrogen (N) and phosphorus (P) inputs have greatly contributed to the increasing food production in China during the last decades, but have also increased N and P losses to the environment. The pathways and magnitude of these losses are not well quantified. Here, we report on N and P use efficiencies and losses at a national scale in 2005, using the model NUFER (NUtrient flows in Food chains, Environment and Resources use). Total amount of "new" N imported to the food chain was 48.8 Tg in 2005. Only 4.4.Tg reached households as food. Average N use efficiencies in crop production, animal production, and the whole food chain were 26, 11, and 9%, respectively. Most of the imported N was lost to the environment, that is, 23 Tg N to atmosphere, as ammonia (57%), nitrous oxide (2%), dinitrogen (33%), and nitrogen oxides (8%), and 20 Tg to waters. The total P input into the food chain was 7.8 Tg. The average P use efficiencies in crop production, animal production, and the whole food chain were 36, 5, and 7%, respectively. This is the first comprehensive overview of N and P balances, losses, and use efficiencies of the food chain in China. It shows that the N and P costs of food are high (for N 11 kg kg(-1), for P 13 kg kg(-1)). Key measures for lowering the N and P costs of food production are (i) increasing crop and animal production, (ii) balanced fertilization, and (iii) improved manure management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.