Abstract

We develop a nonlinear thermo-elastic model for polycarbonate (PC) using ultrasonic longitudinal and shear waves applied on a sample under confined compression. The model is a thermodynamically consistent model developed based on data obtained from a modified pressure–volume–temperature measurement system that also provides the longitudinal and shear wave moduli (Masubuchi et al., 1998. Materials Science Research International 4(3), 223–226). The heat capacity data was obtained by using a differential scanning calorimeter. The resulting model reproduces the ultrasonic behavior of the PC over the temperature range of 35 °C to 150 °C and under pressures from 0 to 70 MPa. Since the response at constant pressure is close to linear below the glass transition temperature of 147 °C, one may extend the use of the model to temperatures below 35 °C, possibly covering most of the range of use for most applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.