Abstract

Non-axisymmetric stationary magnetic perturbations lead to the formation of homoclinic tangles near the divertor magnetic saddle in tokamak discharges. These tangles intersect the divertor plates in static helical structures that delimit the regions reached by open magnetic field lines reaching the plasma column and leading the charged particles to the strike surfaces by parallel transport. In this article we introduce a non-axisymmetric rotating magnetic perturbation to model the time evolution of the three-dimensional magnetic field of a single-null DIII-D tokamak discharge developing a rotating tearing mode. The non-axiymmetric field is modeled using the magnetic signals to adjust the phases and currents of a set of internal filamentary currents that approximate the magnetic field in the plasma edge region. The stable and unstable manifolds of the asymmetric magnetic saddle are obtained through an adaptive calculation providing the cuts at a given poloidal plane and the strike surfaces. For the modeled shot, the experimental heat pattern and its time development are well described by the rotating unstable manifold, indicating the emergence of homoclinic lobes in a rotating frame due to the plasma instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call