Abstract

We propose a probabilistic topic model for analyzing and extracting content-related annotations from noisy annotated discrete data such as webpages stored using social bookmarking services. With these services, because users can attach annotations freely, some annotations do not describe the semantics of the content, thus they are noisy, i.e., not content related. The extraction of content-related annotations can be used as a prepossessing step in machine learning tasks such as text classification and image recognition, or can improve information retrieval performance. The proposed model is a generative model for content and annotations, in which the annotations are assumed to originate either from topics that generated the content or from a general distribution unrelated to the content. We demonstrate the effectiveness of the proposed method by using synthetic data and real social annotation data for text and images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.