Abstract
Detecting neutrinos and extracting the information they bring along is an ambitious task that requires a detailed understanding of neutrino-nucleus interactions over a broad energy range. We present calculations for quasi-elastic neutrino-induced nucleon knockout reactions on atomic nuclei and neutrino-induced pion production reactions. In our models, final-state interactions are introduced using a relativistic multiple-scattering Glauber approximation (RMSGA) approach. For interactions at low incoming neutrino energies, long-range correlations are implemented by means of a continuum random phase approximation (CRPA) approach. As neutrinos are the only particles interacting solely by means of the weak interaction, they can reveal information about e.g. the structure of nuclei or the strange quark content of the nucleon that is difficult to obtain otherwise. We investigated these effects and present results for the sensitivity of neutrino interactions to the influence of the nucleon's strange quark sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.