Abstract

We present a new network model accounting for multidimensional assortativity. Each node is characterized by a number of features and the probability of a link between two nodes depends on common features. We do not fix a priori the total number of possible features. The bipartite network of the nodes and the features evolves according to a stochastic dynamics that depends on three parameters that respectively regulate the preferential attachment in the transmission of the features to the nodes, the number of new features per node, and the power-law behavior of the total number of observed features. Our model also takes into account a mechanism of triadic closure. We provide theoretical results and statistical estimators for the parameters of the model. We validate our approach by means of simulations and an empirical analysis of a network of scientific collaborations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.