Abstract

We consider a cluster Poisson model with heavy-tailed interarrival times and cluster sizes as a generalization of an infinite source Poisson model where the file sizes have a regularly varying tail distribution function or a finite second moment. One result is that this model reflects long-range dependence of teletraffic data. We show that depending on the heaviness of the file sizes, the interarrival times and the cluster sizes we have to distinguish different growths rates for the time scale of the cumulative traffic. The mean corrected cumulative input process converges to a fractional Brownian motion in the fast growth case. However, in the intermediate and the slow growth case we can have convergence to a stable Levy motion or a fractional Brownian motion as well depending on the heaviness of the underlying distributions. These results are contrary to the idea that cumulative broadband network traffic converges in the slow growth case to a stable process. Furthermore, we derive the asymptotic behavior of the cluster Poisson point process which models the arrival times of data packets and the individual input process itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.