Abstract
The bubble growth dynamics of a polymer supersaturated with CO2 have been modeled for micron-size films after nucleation. The model equations are based on the shell model of Arefmanesh, Advani, and Michaelides in which a nucleated bubble is surrounded by a finite concentric shell of polymer supersaturated with gas. Bubbles grow by mass transfer of dissolved gas from this shell. The model is extended to allow for diffusion of dissolved gas out of the shell in addition to diffusion into the bubble. A parametric analysis is performed to examine the effects of film thickness, temperature, diffusivity at the Tg and Henry's law constant. POLYM. ENG. SCI., 45:640–651, 2005. © 2005 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.