Abstract

The quality of nanoparticle dispersion in a polymer matrix significantly influences the macroscopic properties of the composite material. Like general polymer-nanoparticle composites, electrospun nanofiber nanoparticle composites do not have an adopted quantitative model for dispersion throughout the polymer matrix, often relying on a qualitative assessment. Being such an influential property, quantifying dispersion is essential for the process of optimization and understanding the factors influencing dispersion. Here, a simulation model was developed to quantify the effects of nanoparticle volume loading (ϕ) and fiber-to-particle diameter ratios (D/d) on the dispersion in an electrospun nanofiber based on the interparticle distance. A dispersion factor is defined to quantify the dispersion along the polymer fiber. In the dilute regime (ϕ < 20%), three distinct regions of the dispersion factor were defined with the highest quality dispersion shown to occur when geometric constraints limit fiber volume accessibility. This model serves as a standard for comparison for future experimental studies and dispersion models through its comparability with microscopy techniques and as a way to quantify and predict dispersion in electrospinning polymer-nanoparticle systems with a single performance metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.