Abstract
A novel three-dimensional adaptive meshing algorithm is presented and applied to finite-element sirnulations of multiphase fluid flows. A threedimensional domain enclosing another phase is discretized by an unstructured mesh of tetrahedra constructed from a triangulated surface of the phase boundaries. Complete remeshing is performed after each time step. The boundary mesh is reconstructed using an existing algorithm employing element addition/subtraction, edge swapping based on Delaunay triangulation and spring-like dynamical relaxation. The volume mesh is then generated from the boundary using the commercial software Hypermesh. The resulting adaptive discretization maintains resolution of prescribed local length scales. We demonstrate our method with finite-element simulation~ of deformable drops ~ubjected to simple shear under Stokes flow conditions. Steady drop shapes in agreement with experimental data as well as the evolution of slender fluid filaments characteristic of drop breakup are accurately described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.