Abstract

An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na3X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H+, Na+, K+, Rb+, and Cs+. The equilibrium constants for these reactions were estimated from experiments with simple ion exchange systems. Bromley's model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley's model parameters for CsOH at high ionic strength and for NO2- and Al(OH)4- were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equil...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.