Abstract
Balancing bed allocation is a critical but cumbersome decision-making process in hospitals due to limited capacity, fluctuations in the rate of patient arrival and service interactions among various units; typically, this will cause blockages in multi-stage healthcare services. Accurately estimating the blocking probability is an important task in order to improve the performance of healthcare systems. Early studies assumed either unlimited bed capacity or no service interaction among units. In this study, we consider the correlation between the blockage and service time of the subsequent stage and apply a multi-stage tandem-queuing model with limited bed capacity and service interactions to model healthcare systems. We develop two effective heuristics to estimate the patient-blocking probability, which are then used to develop an integrated mathematical model for bed allocation. We collect real-world data from a tertiary hospital in China to delineate the effect of service interactions while estimating the blocking probability and use non-parametric rank-sum tests to verify and compare the relative performances of the proposed model against two popular heuristics. Our comparative results illustrate that the proposed model is as accurate as simulations. We also observe that increasing the number of beds during the first stage is more effective in reducing blockage than doing so later in case of a limited number of beds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.