Abstract
Monolithic samples of a cement mortar were stored in reactive (100% CO2) and inert (100% N2) atmospheres at three levels of relative humidity (23, 48, and 98%). Atmospheric conditions were monitored and the mass of each sample was measured periodically over a period of 88 days. Carbonation depth of split samples was delineated using 1% phenolphthalein solution. In addition, a solid–liquid isotherm was developed by drying smaller monoliths over eight hygroscopic salt solutions in 100% N2 until a constant mass was obtained. Isotherm experimental data was used to parameterize a two-regime moisture transport model based on previously developed drying approaches. This first-order model accounts for both funicular moisture transport and isothermally controlled drying in a fixed porous matrix. Kinetic drying data for the cement mortar was described adequately by simulation of mean relative saturation as a function of drying time and external relative humidity. Comparison of moisture transport in the inert atmosphere to that in the reactive atmosphere indicates that matrix drying had a substantial effect on the carbonation depth; however, drying was seemingly independent of the carbonation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.