Abstract

The modeling, modulation, and control of the three-phase four-switch (TPFS) PWM rectifier are investigated in this paper. Three space vector pulse width modulation methods using different equivalent zero vectors are developed, where sector identification and the trigonometric function are not required. Then, the high-frequency model for the current ripple analysis is proposed, and the effects of three SVM approaches on the ac current ripple are investigated. According to the analytical results, the method introducing the smallest current ripple is selected. With the optimized SVM approach, a control-oriented model, considering the capacitor voltage oscillation and deviation, is built in the dq synchronous frame to facilitate the controller design. Furthermore, a control strategy implementing the proportional controller is developed to eliminate the capacitor voltage deviation. Meanwhile, the dual-loop control of the TPFS is not affected by the proposed strategy as the capacitor voltage deviation is eliminated. Finally, a novel linear modulation index function is defined to reject the low-frequency harmonic current introduced by the overmodulation. Experimental results demonstrate that excellent current performance is achieved with comprehensive considerations of the modeling, modulation, and control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.