Abstract

AbstractAn eddy‐resolving coupled regional ocean‐sea ice‐ice shelf model is employed to locate the hot spots where modified Circumpolar Deep Water (mCDW) intrudes onto the continental shelf within Prydz Bay, and locate the paths through which mCDW is transported to the Amery Ice Shelf (AIS) calving front. Evaluation of the model output is with satellite, hydrographic and borehole data. Two critical windows responsible for mCDW intrusions are identified. The first is the eastern branch of the cyclonic Prydz Bay gyre (PBG) that carries mCDW to the ice front line, accounting for an annual mean heat transport of ∼8.7 ×1011 J s−1. The second is located to the east of the Four Ladies Bank (FLB) where mCDW is channeled through submarine troughs, accounting for an annual mean heat transport of ∼16.2 ×1011 J s−1. The eddy‐induced heat transport accounts for ∼23% in the path of the PBG and ∼52% in the path of the eastern coastal current, with respect to their total onshore heat transport. The seasonal pulsing of mCDW intrusions is greatly dependent on the seasonal cycle of the Antarctic Slope Current (ASC) that peaks with a maximum of ∼29.3 Sv at 75°E in June. In austral winter, mCDW is allowed to access the eastern flank of the AIS calving front with potential consequences for the basal mass balance of the AIS. The dynamic effects of small‐scale troughs on the longshore ASC play an important role in the onshore mCDW transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call