Abstract

Microscopic detail of complex vehicle interactions in mixed traffic, involving manual driving system (MDS) and automated driving system (ADS), is imperative in determining the extent of response by ADS vehicles in the connected automated vehicle (CAV) environment. In this context, this paper proposes a naïve microscopic car-following strategy for a mixed traffic stream in CAV settings and specified shifts in traffic mobility, safety, and environmental features. Additionally, this study explores the influences of platoon properties (i.e., intra-platoon headway, inter-platoon headway, and maximum platoon length) on traffic stream characteristics. Different combinations of MDS and ADS vehicles are simulated in order to understand the variations of improvements induced by ADS vehicles in a traffic stream. Simulation results reveal that grouping ADS vehicles at the front of traffic stream to apply Cooperative Adaptive Cruise Control (CACC) based car-following model will generate maximum mobility benefits for upstream vehicles. Both mobility and environmental improvements can be realized by forming long, closely spaced ADS vehicles at the cost of reduced safety. To achieve balanced mobility, safety, and environmental advantages from mixed traffic environment, dynamically optimized platoon configurations should be determined at varying traffic conditions and ADS market penetrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.