Abstract

Risk estimates for food-borne infection will usually depend heavily on numbers of microorganisms present on the food at the time of consumption. As these data are seldom available directly, attention has turned to predictive microbiology as a means of inferring exposure at consumption. Codex guidelines recommend that microbiological risk assessment should explicitly consider the dynamics of microbiological growth, survival, and death in foods. This article describes predictive models and resources for modeling microbial growth in foods, and their utility and limitations in food safety risk assessment. We also aim to identify tools, data, and knowledge sources, and to provide an understanding of the microbial ecology of foods so that users can recognize model limits, avoid modeling unrealistic scenarios, and thus be able to appreciate the levels of confidence they can have in the outputs of predictive microbiology models. The microbial ecology of foods is complex. Developing reliable risk assessments involving microbial growth in foods will require the skills of both microbial ecologists and mathematical modelers. Simplifying assumptions will need to be made, but because of the potential for apparently small errors in growth rate to translate into very large errors in the estimate of risk, the validity of those assumptions should be carefully assessed. Quantitative estimates of absolute microbial risk within narrow confidence intervals do not yet appear to be possible. Nevertheless, the expression of microbial ecology knowledge in "predictive microbiology" models does allow decision support using the tools of risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.