Abstract

A quite intriguing subject being intensively researched in the forensic toxicology field is the source of postmortem determined blood ethanol concentration: antemortem ingestion or postmortem microbial production. Our previous research on microbial ethanol production has reported a quantitative relationship between the ethanol and the higher alcohols and 1-butanol produced by Escherichia coli, Clostridium perfrigens, and Clostridium sporogenes. In this contribution, we continue our research reporting on the following: (i) the patterns of ethanol, higher alcohols, and 1-butanol production by the microbes Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (all being aerobic/facultative anaerobic species, common corpse's colonizers, and ethanol producers), under controlled laboratory conditions, (ii) the mathematical modeling, with simple mathematical equations, of the correlation between ethanol concentration and the other studied alcohols' concentrations, by performing multiple linear regression analysis of the results, and (iii) the applicability of the constructed models in microbial cultures developed under different temperature than that used to build the models, in denatured blood cultures and in real postmortem cases. The aforementioned alcohols were proved to be all indicators of ethanol production, both in qualitative and quantitative terms. 1-Propanol was the most significant alcohol in modeling microbial ethanol production, followed by methyl-butanol. The K. pneumoniae's models achieved the best scoring in applicability (E < 40%) compared to the S. aureus and E. faecalis models, both at laboratory microbial cultures at 37°C and real postmortem cases. Overall, a noteworthy accuracy in estimating the microbial ethanol in cultures and autopsy blood is achieved by the employed simple linear models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call