Abstract

A new multi-layered model is developed for the fracture analysis of a functionally graded interfacial zone with arbitrary material properties. It is assumed that the interfacial zone is divided into sub-layers with the material properties of each sub-layer varying in a power-law function. The model is used to study the crack problem in the functionally graded interfacial zone between two homogeneous half-planes under a dynamic anti-plane load. Using Fourier–Laplace transforms and the transfer matrix method, the mixed boundary value problem is reduced to a Cauchy singular integral equation, which is solved numerically in the Laplace transform domain. Laplace numerical inversion transform is employed to obtain the stress intensity factors. The results show that the new model is general and effective for the crack problem of the functionally graded interfacial zone with arbitrary properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call