Abstract

Polyhydroxyalkanoates (PHAs) are a family of biodegradable and biocompatible polymers produced by several species microorganisms that possess favorable mechanical properties (e.g. strength and elongation properties). Different types of PHA polymers have been used in medical applications. However, in order to better understand the use of this polymer in the different applications, a thorough understanding of the kinetics of in vivo degradation is one of the major requirements. In this study, poly(3‐hydroxybutyrate) (PHB) was subcutaneously implanted in mice and incubated for 2, 4, 8, or 16 weeks. After removal from the animal, the strength, elongation, mass loss, and enthalpy of the PHB were tested for each time point. From these data, a mathematical model was generated by Rayleigh's method of dimensional analysis, where polymer strength over tissue contact time could be predicted. To prove the model, previous data obtained by our group were used: poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] incubation in the presence of human embryonic kidney cells (HEK). It was found that the developed model was aligned with experimental results, could predict the strength of the polymer when in contact with cells, and the predicted strength follows the trend of the experimental data. Also, the dimensionless constant (K) value associated with the model is different for both experiments, where this constant, produced via experimental data, is used for construction of a homogeneous equation. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.