Abstract

The disturbance torque generated via solar array drive assembly (SADA) can significantly degrade the key performance of satellite. The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-stage straight gear reducer. Firstly, the vibration equation of the two-phase hybrid stepping motor is established via simplifying and linearizing the electromagnetic torque. Secondly, based on the vibration equation established, the disturbance torque model of SADA is created via force analysis and force system simplification. Thirdly, for precisely ground measuring the disturbance torque aroused by SADA, a measurement system, including a strain micro-vibrations measurement platform (SMMP) and a set of gravity unloading device (GUD), is designed. Fourthly, the proposed disturbance torque model is validated by measuring and simulating the disturbance torque produced via SADA driving rigid load through GUD. The results indicate that, the proposed disturbance torque model holds the ability to describe the disturbance torque caused by SADA with high precision. Finally, the disturbance torque emitted by SADA driving a flexible load, designed to simulate solar array, is modeled and simulated via using fixed-interface mode synthesis method (FIMSM). All the conclusions drawn from this article do have a meaningful help for studying the disturbance torque produced by SADA driving solar array on orbit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call