Abstract

The heavy belt-grinding is a new machining method, which combined the characters of heavy-duty grinding and belt-grinding together, with high efficiency and low cost. In the present paper the removal rate model of heavy belt-grinding in manufacturing of U71Mn steel is established. It is assumed that the distribution of the abrasive particles protrusion height of the abrasive belt surface closes to Gaussian distribution. The model is presented by calculating the removal volumes of all abrasive grains contributing to cutting action based on the probability theory, elastic-plastic mechanics and abrasive cutting theory. It is analysis that the material removal rate depends essentially on the mechanical properties of the workpiece and the belt and the grinding conditions. It is proportional to the average pressure, belt velocity and the indentation depth and is inverse proportion to the grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call